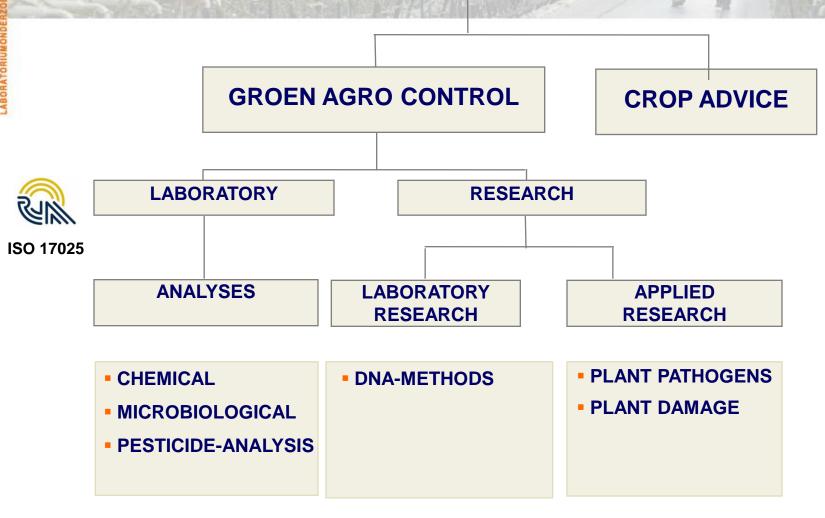
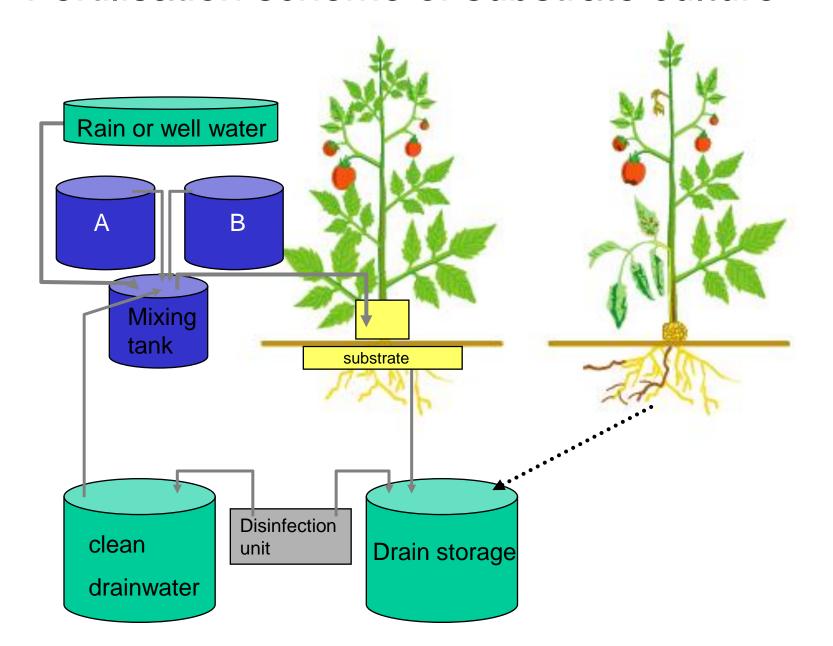
Analysis and advice for agricultural sector


Barend Groen

Groen Agro Control

Agricultural Laboratory

DELFT RESEARCH GROUP BV


Research, analysis and advice for all parts of the food production chain

ANALYSIS	propagation	culture	retail
Chemical analysis	X	X	
Microbiological	X	X	X
Diagnose	X	X	
Hygiene	X	X	
Advice	X	X	
Residu-analysis	X	X	X

Present situation in The Netherlands

- Increase of production/m² (tomato): 8 kg/m² in soil to 70 kg/m² in substrate in modern greenhouses
- Year-round production (retail)
- No emission of nutrients and pesticides to the environment (government rules)
- Food quality (fresh, tasty and uniform product)
- Food safety is the minimal demand of consumer (EurepGAP and QS)

Fertilisation scheme of substrate culture

Examples of substrate cultures in the Netherlands

Tomato 1 year

Rose 5 years

Groen Agro Control

How to achieve maximum yields per/m² and year-round production?

- Switch from field-grown to greenhouses (glass or plastic tunnel)
 - Better control of heating, cooling and humidity
 - Greater consistency in quality, volumes and pricing (retail)
 - Lower disease pressure
- Switch from soil to substrates like rockwool, peat and cocos:
 - Better control of waterering, fertilizer, pH, EC and pathogens
- CO₂ to boost yields
- Artificial light

Important conditions for top productions

Clean and vital young plants most important step

Optimization of nutrients, water content and pH

Control of pathogens

Start with young plants free of pathogens

- Clean start at the propagator
 - Seeds free of plant pathogens
 - Hygienic measurements at propagation of young plants

Grower

- Low infection level in soil or substrate (disinfection)
- Good water quality

Water quality is essential

- Pollution: plant toxic compounds
- Algae: clogging watersystem
- Too salty: high Na concentration
- Too cold: roots are sensitive for rapid change
- Too warm ,, ,,
- Not enough water:
- Plant pathogens

Optimal fertilization is the succes of the crop

- Fertilizer:
 - Purity of fertilizer is important for growth
 - Recirculation of drainwater requires the best quality of fertilizer

Main problems with fertilization

pH or EC of nutrient solution wrong

Wrong composition of nutrient in mixing tank

Electricity breakdown 1-4 h

Electric valves problems

Control pH- and EC-meters!

At grower and nursery

Crop disorders due to problems with fertilizer uptake

- 1. iron deficiency
- 2. manganese symptoms in leafs
- 3. blossom end rot
- 4. gold spot in tomato
- 5. potassium deficiency
- 6. magnesium deficiency
- 7. boron problems
- 8. calcium symptoms on leafs

Analyse soil and (drain)water frequently

Minimal 1 x per month

Laboratory analysis

 Frequently analyse the nutrients in soil and substrate to adjust fertilization

Analysis of leaves to check deficiency and excess of nutrients

Laboratory analysis

Sample: Drain west greenhouse Date: 10-10-2006

Crop: Tometo, Antwerpen, Turkey

ustomer: 2527 Sample nr. 1117295

Agraser Attn. Bozek Yolu

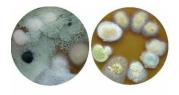
PK 53 07500 Antalya

										ppm								ppr	п		
Element			рH	EC	NH ₄	K	Na	Ca	Mg	Si	NO ₃	a	804	H003	H_2PO_4	Fe	Mn	Zn	В	Cu	Mo
Analysis			6.0	4.6	0.00	434	50.6	457	159	25.6	325	49.7	302	25.9	83.1	3.0	89.0	0.58	1.0	0.02	0.12
Analysis (EC(c)))			3.0	0.00	297	50.6	313	108	25.6	223	34.0	207	25.9	56.9	2.1	0.68	0.40	0.65	0.01	0.06
Target			6.0	3.0	1.9	287		294	97.2		299	71.0	107		51.7	2.2	1.3	0.61	0.86	0.06	
Standard feed				2.3	10.5	283		201	54.7		217	35.5	72.2		54.3	1.7	0.82	0.33	0.38	0.04	0.05
Corrections	An	alysis	ı								54.6	17.8	-16.05				0.16	0.07	0.05	0.01	
	Ext	trus				68.0		-25,00	6.00												
Drip water				2.5	10.5	383		191	53.1		252	58.3	53.7		54.3	1.7	0.99	0.39	0.45	0.05	0.05
Tap/Well	100	from:					0.90	60.1	18.2	0.30		0.58	9.0	244				0.30	4.1		
Surface	0	from:	ı																		
Recirculation	0	from:																			
Injection concer	ntratio	ens			10.5	383		131	34.9	0.00	252	57.7	45.7	244	54.3	1.7	0.99	0.05	0.11	0.05	0.05

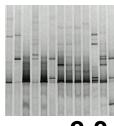
			Solid Fertilizer with KCI					Remarks:
Water		Tank A					Tank B	Recepy for flowering 6e truss.
Tap/Well	100 % B 8.5,9952.2,996/0,9968,0.0	Calcium nitrate (19%Ca, 16%N)	70.7	kg	Nitric acid 55 %	37.1	liter	
Rain	0 %	Ammonium nitrate (35%N)	0.77	kg	Potassium nitrate (38%K, 13%N)	21.9	kp	
Surface		Magnesium nitrate (9%Mg, 11%N)	0.29	kg	MonoPotPhos (29%K, 23%P)	23.8	kg	
Recirculation	0 %	Potassium nitrate (38%K, 13%N)	43.0	kg	Magnesium sulphate (10%Mg, 13%S)	35.1	kg	
		Potassium chloride (50%K, 45%CI)	12.1	kg	Potassium sulphate (45%K, 13%S)	0.00	kg	
System		l			l			
BC drip water	2.5 mS/om	l			l			
Tank A volume	1000 libre	l			Mn sulphate 32.0 %	304	0	
Tank B volume	1000 libre	Fe-chelate 12.5 %	1339	9	Zn sulphete 23.0 %	42.7	9	
Concentration fact	pr 100:0 x	I	1090	ml	Borax 11.0 %	100	9	
		l			Cu sulphate 25.0 %	21.0	0	
		I			Na -Molybdate 40.0 %	12.0	a	

This recipee is made under the condition that no liability is claimed by the user

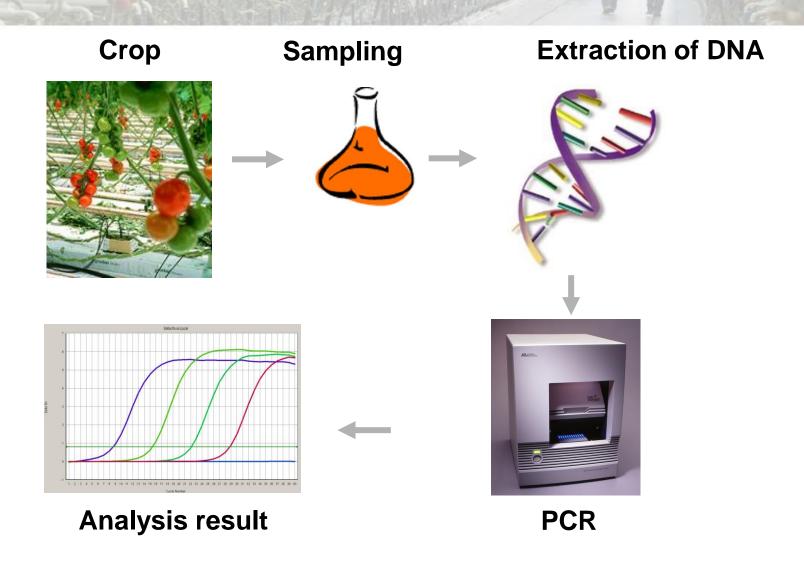
Diagnostic service


Methods:

- Microscope

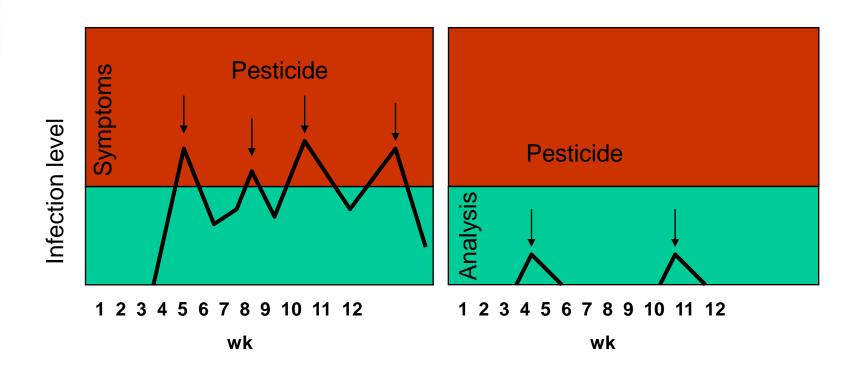

1 day

- Plating


10-14 days

- DNA-technique

2-3 days


Moderne DNA-techniques

Prevention is better than cure

- Diagnosis of plant pathogens
 - Grower notice plant disease
 - Send plant to a lab for diagnosis
- Monitoring of plant pathogens before symptoms are observed
 - Pathogens are detected in a very early stage of the infection with new DNA-techniques
 - No visible symptoms are observed.
 - Preventitive actions to lower the infection level.

Effective pesticide treatment with monitoring

Food qualty and safety in the Netherlands

- The consument don't exept a high pesticide residu on his food
- The quality of the Dutch food is high with the lowest level of pesticide residu
- Our lab controls the quality and food safety of the food products.
- EurepGAP and QS are the lowest demands of retail for foodsafety

Minimum conditions to achieve this goals

- Switch from open-field to greenhouses
- Focus on quality, food safety and efficiency.
- Grower associations: not only reduction of costs and labour but also to be a partner for retail
- Example: Dutch association of growers
 - Prominent, Greenery etc

Our laboratory can assist you to improve your culture

Thank you for your attention

Standard fertiliser scheme tomato

EC	PH	NH4	K	Ca	Mg
2.63	5.5	22	371	216	58

- Extra plant charge
- + 68 ppm K
- 25 ppm Ca
- 6 ppm Mg

NO3	CI	SO4	PO4
853	80	423	145

Fe	Mn	Zn	В	Cu	Мо
0.84	0.55	0.33	0.32	0.05	0.05

Standard fertiliser schema cucumber

EC	рН	NH4	K	Ca	Mg
2	5.5	23	313	160	34

- Extra fruits
- + 62 ppm nitrate
- + 39 ppm potas

NO3	CI	SO4	PO4	
992	0	133	121	

Fe	Mn	Zn	В	Cu	Мо
0.84	0.55	0.33	0.27	0.05	0.05